精 灵 王


  • 首页

  • 文章归档

  • 所有分类

  • 关于我

  • 搜索
设计模式之美 分布式 Redis 并发编程 个人成长 周志明的软件架构课 架构 单元测试 LeetCode 工具 位运算 读书笔记 操作系统 MySQL 异步编程 技术方案设计 集合 设计模式 三亚 游玩 转载 Linux 观察者模式 事件 Spring SpringCloud 实战 实战,SpringCloud 源码分析 线程池 同步 锁 线程 线程模型 动态代理 字节码 类加载 垃圾收集器 垃圾回收算法 对象创建 虚拟机内存 内存结构 Java

⑦SpringCloud 实战:引入Sleuth组件,完善服务链路跟踪

发表于 2020-12-21 | 分类于 SpringCloud | 0 | 阅读次数 577

这是SpringCloud实战系列中第7篇文章,了解前面第两篇文章更有助于更好理解本文内容:
①SpringCloud 实战:引入Eureka组件,完善服务治理
②SpringCloud 实战:引入Feign组件,发起服务间调用
③SpringCloud 实战:使用 Ribbon 客户端负载均衡
④SpringCloud 实战:引入Hystrix组件,分布式系统容错
⑤SpringCloud 实战:引入Zuul组件,开启网关路由
⑥SpringCloud 实战:引入gateway组件,开启网关路由功能

背景

近年来,随着微服务架构的流行,很多公司都走上了微服务拆分之路。从而使系统变得越来越复杂,原本单体的系统被拆成很多个服务,每个服务之间通过轻量级的 HTTP 协议进行交互。

单体架构时,一个请求的调用链路非常清晰,一般由负载均衡器,比如 Nginx。将调用方的请求转发到后端服务,后端服务进行业务处理后返回给调用方。而当架构变成微服务架构时,可能带来一系列的问题,比如下面三个问题:

  1. 接口响应慢,怎么排查?
  2. 服务间的依赖关系如何查看?
  3. 请求贯穿多个微服务,如何将每个请求的日志串起来?

分布式链路跟踪

分布式链路跟踪原理在于如何能将请求经过的服务节点都关联起来。当一个请求从客户端到达网关后,相当于是第一个入口,这时就需要生成一个唯一的请求 ID,作为这次请求的标识。从网关到达服务 A 后,肯定是需要将请求 ID 传递到服务 A 中的,这样才能将网关到服务 A 的请求关联起来,依次类推,后面会经过多层服务,都需要将信息一层层传递。当然在每一层都需要将数据进行上报、统一存储、展示等操作。

从我们对这个需求的理解来看,链路跟踪并不是很复杂,而复杂的点在于如何实现这一套跟踪框架,就拿请求信息传递这件事来说,服务之间交互,有的用的是 Feign 调用接口,有的用的是 RestTemplate 调用接口,要想将信息传递到下游服务,那么必须得扩展这些调用的框架才可以。

1

核心概念

  • Span

    基本工作单元,例如,发送 RPC 请求是一个新的 Span,发送 HTTP 请求是一个新的 Span,内部方法调用也是一个新的 Span。

  • Trace

    一次分布式调用的链路信息,每次调用链路信息都会在请求入口处生成一个 TraceId。

  • Annotation

    用于记录事件的信息。在 Annotation 中会有 CS、SR、SS、CR 这些信息,前面的C表示客户端,S表示服务器端; 后面的S表示sent,也就是发起请求时的动作,R表示Received,也就是接受到请求时的动作;下面分别介绍下这些信息的作用。

    • CS
      也就是 Client Sent,客户端发起一个请求,这个 Annotation 表示 Span 的开始。
    • CR
      也就是 Client Received,表示 Span 的结束,客户端已成功从服务器端收到响应,用 CR 的时间戳减去 CS 的时间戳就可以知道客户端从服务器接收响应所需的全部时间。
    • SS
      也就是 Server Sent,在请求处理完成时将响应发送回客户端,用 SS 的间戳减去 SR 的时间戳会显示服务器端处理请求所需的时间。
    • SR
      也就是 Server Received,服务器端获得请求并开始处理它,用 SR 的时间戳减去 CS 的时间戳会显示网络延迟时间。

请求追踪过程分解

2

  1. 首先当一个请求访问 SERVICE1 时,这时是没有 Trace 和 Span 的,然后会生成 Trace 和 Span,如图所示生成的 Trace ID 是 X,Span ID 是 A。
  2. 接着 SERVICE1 请求 SERVICE2,这是一次远程请求,会生成一个新的 Span,Span ID 为 B,Trace ID 不变还是 X。Span B 处于 CS 状态。
  3. 当请求到达 SERVICE2 后,Trade ID 和 Span ID 就被传递过来了,这时,SERVICE2 有内部操作,又生成了一个新的 Span,Span ID 为 C,Trace ID 不变还是 X。
  4. SERVICE2 处理完后向 SERVICE3 发起请求,同时产生新的 Span,Span ID 为 D,Span D 处于 CS 状态,SERVICE3 接收到请求后,Span D 处于 SR 状态,同时 SERVICE3 内部操作也会产生新的 Span,Span ID 为 E。
  5. 当 SERVICE3 处理完后,需要将结果响应给调用方,这时 Span D 就处于 SS 的状态,当 SERVICE2 收到响应后,Span ID 为 D 的 Span 就是 CR 状态,表示 Span 已经结束了。

Zipkin 介绍

Zipkin 是 Twitter 的一个开源项目,是一个致力于收集所有服务监控数据的分布式跟踪系统,它提供了收集数据和查询数据两大接口服务。有了 Zipkin 我们就可以很直观地查看调用链,并且可能很方便看出服务之间的调用关系,以及调用耗费的时间。

Zipkin还提供了可插拔数据存储方式:In-Memory、MySql、Cassandra以及Elasticsearch。测试方便可直接采用In-Memory方式进行存储,生产推荐使用Elasticsearch。

安装 Zipkin

如果使用了 Java 8 或者更高的版本,可以获取最新的可执行 jar 包来进行启动。

  1. 下载jar包:

    curl -sSL https://zipkin.io/quickstart.sh | bash -s
    

    如果下载太慢,可以直接访问Maven地址进行下载最新的jar。

    其他方式安装,可以查看官网的quickstart。

  2. 启动服务

    java -jar zipkin.jar
    
  3. 访问Zipkin

    成功启动服务后,访问http://127.0.0.1:9411/zipkin/即可。

    3

Sleuth 介绍

Spring Cloud Sleuth 是一种分布式的服务链路跟踪解决方案,通过使用 Spring Cloud Sleuth 可以让我们快速定位某个服务的问题,以及厘清服务间的依赖关系。

Sleuth 可以添加链路信息到日志中,这样的好处是可以统一将日志进行收集展示,并且可以根据链路的信息将日志进行串联。

Sleuth 中的链路数据可直接上报给 Zipkin,在 Zipkin 中就可以直接查看调用关系和每个服务的耗时情况.

Sleuth 中内置了很多框架的埋点,比如:Zuul、Feign、Hystrix、RestTemplate 等。正因为有了这些框架的埋点,链路信息才能一直往下传递。

通过 Http 结合Zipkin

  1. 在我们的微服务项目中添加Zipkin依赖

    <dependency> 
        <groupId>org.springframework.cloud</groupId>
        <artifactId>spring-cloud-starter-zipkin</artifactId>
    </dependency>
    
  2. 配置Zipkin地址

    spring.zipkin.base-url=http://127.0.0.1:9411/
    
  3. 配置采样比例
    实际使用中可能调用了 10 次接口,但是 Zipkin 中只有一条数据,这是因为收集信息是有一定比例的,Zipkin 中的数据条数与调用接口次数默认比例是 10:1,通过下面的配置来改变这个比例值:

    spring.sleuth.sampler.probability=1.0
    
  4. 验证
    启动我们的微服务,访问 http://localhost:9000/eureka-client/sayHello 接口,接口由网关路由到eureka-client 服务,eureka-client 服务再调用eureka-provider服务,接口返回eureka-provider服务的端口等信息。
    然后访问 http://127.0.0.1:9411/zipkin ,点击查询,即可查看到相关访问记录
    4

    点击菜单上面的依赖,可以查看项目的依赖关系

    5

使用 RabbitMQ or Kafka 代替 HTTP 发送调用链数据

数据的发送如果采用 HTTP 对性能还是有影响的。如果Zipkin 的服务端在重启或者挂掉时,那么将丢失部分采集数据。为了解决这些问题,我们可以集成 RabbitMQ 或者Kafka 来发送采集数据,利用消息队列来提高发送性能,保证数据不丢失;

  1. 如果要使用RabbitMQ或Kafka而不是HTTP,需要引入spring-rabbit or spring-kafka 相关依赖。

    <dependency> 
        <groupId>org.springframework.amqp</groupId>
        <artifactId>spring-rabbit</artifactId>
    </dependency>
    
  2. 然后在配置文件修改相关配置:

    # WEB、KAFKA、RABBIT、ACTIVEMQ
    spring.zipkin.sender.type=kafka
    
  3. 删除之前配置的 spring.zipkin.base-url

  4. 配置kafka、rabbit

自定义 Zipkin 配置

每个跟踪系统都需要具有Reporter <Span>和Sender,如果要覆盖提供的bean,则需要给它们指定一个特定的名称 ZipkinAutoConfiguration.REPORTER_BEAN_NAME and ZipkinAutoConfiguration.SENDER_BEAN_NAME。

下面是示例:

@Configuration
protected static class MyConfig {

    @Bean(ZipkinAutoConfiguration.REPORTER_BEAN_NAME)
    Reporter<zipkin2.Span> myReporter() {
        return AsyncReporter.create(mySender());
    }

    @Bean(ZipkinAutoConfiguration.SENDER_BEAN_NAME)
    MySender mySender() {
        return new MySender();
    }

    static class MySender extends Sender {

        private boolean spanSent = false;

        boolean isSpanSent() {
            return this.spanSent;
        }

        @Override
        public Encoding encoding() {
            return Encoding.JSON;
        }

        @Override
        public int messageMaxBytes() {
            return Integer.MAX_VALUE;
        }

        @Override
        public int messageSizeInBytes(List<byte[]> encodedSpans) {
            return encoding().listSizeInBytes(encodedSpans);
        }

        @Override
        public Call<Void> sendSpans(List<byte[]> encodedSpans) {
            this.spanSent = true;
            return Call.create(null);
        }

    }

}
精 灵 王 wechat
👆🏼欢迎扫码关注微信公众号👆🏼
  • 本文作者: 精 灵 王
  • 本文链接: https://jinglingwang.cn/archives/sleuth
  • 版权声明: 本博客所有文章除特别声明外,均采用CC BY-NC-SA 3.0 许可协议。转载请注明出处!
# 设计模式之美 # 分布式 # Redis # 并发编程 # 个人成长 # 周志明的软件架构课 # 架构 # 单元测试 # LeetCode # 工具 # 位运算 # 读书笔记 # 操作系统 # MySQL # 异步编程 # 技术方案设计 # 集合 # 设计模式 # 三亚 # 游玩 # 转载 # Linux # 观察者模式 # 事件 # Spring # SpringCloud # 实战 # 实战,SpringCloud # 源码分析 # 线程池 # 同步 # 锁 # 线程 # 线程模型 # 动态代理 # 字节码 # 类加载 # 垃圾收集器 # 垃圾回收算法 # 对象创建 # 虚拟机内存 # 内存结构 # Java
Java 8 新特性详细解析
Java 开发中常用Linux命令总结
  • 文章目录
  • 站点概览
精 灵 王

精 灵 王

青春岁月,以此为伴

85 日志
14 分类
43 标签
RSS
E-mail
Creative Commons
Links
  • 添加友链说明
© 2022 精 灵 王
渝ICP备2020013371号
0%